
Pathfinding

How pathfinding works
Finding the path, or the sequence of steps, from A to B might not be as easy for an
AI Agent as it is for a human. Luckily, we have pathfinding to save the day.

Pathfinding is the method of searching the shortest path from a point to another.
At the core, pathfinding searches a graph (see the bonus section, data structures)
starting from one of its nodes and, from neighbor to neighbor.

An algorithm that appears everywhere in gamedev is A*. In real-life use cases, this
algorithm is mostly hidden behind layers upon layers of other systems that make
use of it.

And it should be simple - because otherwise we will be reinventing the wheel over
and over again. The most common issue here is that while modern game engines
do provide a simplified process to it, it removes the proper understanding
regarding this system.

Why is this a possible concern for a game developer? Because games usually need
special cases like custom maps with hexagons, unique features and more. And just
by using the tools at hand that task might be close to impossible.

Behind the pathfinder

At the core of any pathfinding solution, there are two main concepts:

DOMAIN + ALGORITHM

The Domain - Where it happens

Don’t get tricked when thinking that the space means the terrain heightmap or the
plane where the AI Agent needs to find its way. The space is the representation of
that space in a way that is:

- Fast - having the full environment for running the algorithm over and over
again is not really doable in a game project. We need a simplified version of
it, similar to a High-Poly 3D Object’s Low-Poly counterpart.

- Reliable - being fast but inaccurate is not ideal as well. Having AIs running
through walls and other obstacles clearly diminishes the player’s game
experience.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022



- Stored properly - if we write the simplified version on a piece of paper it
won’t help our CPU process it. We need to use a proper data structure to hold
all of this newly generated information.

The Algorithm - How it happens

There are many algorithms capable of doing pathfinding. Most of them work very
similar to one another. The main di�erence is their implementation complexity
and their CPU usage.

They can be categorized in two types:
- UNINFORMED -> does not know details about the map, deals with the

situation as it unfolds (when an obstacle is encountered)
- INFORMED -> has additional information and does something extra for

each search step

When speaking of pathfinding A* is the industry-standard because it produces fast
results.

A* is an algorithm that belongs to the INFORMED type. That means, in order to
properly run, A* does require more information about the map than just the
obstacles.

In the next chapter let’s look at a pathfinding algorithm, how it works and how it’s
implemented.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022


